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Abstract: - In engineering practice, beside static case often dynamic effects must be taken into consideration for 

plate design problems. Plate vibration solutions have been available for regular geometries for a long time, but 
where irregular boundaries or partial contact are encountered difficulties arise because it will be necessary to 

describe the governing equation of motion in a general mathematical form. This is not easy. The intention of 

this study is to extend analytical solutions of the discrete one-dimensional elements resting on elastic 
foundation for solution of plate vibration problems. The solution can be stated as an extension of the so-called 

discrete parameter approach where the physical domain is broken down into discrete sub-domains, each 

endowed with a response suitable for the purpose of mimicking problem at hand. The numerical results of this 

solution technique show versatile and powerful analysis capacity to solve various vibration problems including 
bi-directionally stepped and plates on non-homogeneous elastic foundation. 
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1 Introduction 
Plates on elastic foundations have received 
considerable attention due to their wide applicability 

in many engineering disciplines. Since the 

interaction between structural foundations and 

supporting soil has a great importance in many 
engineering applications, a considerable amount of 

research has been conducted. Many studies, such as 

[1-9] have been done to find a convenient 
representation of physical behavior of a real 

structural component supported on a foundation. 

There are several practical foundation models as 

well as their proper mathematical formulations. A 
broad range of the beam or plates as engineering 

problems has been solved numerically such as finite 

element and boundary element methods [10-15]. 
Owing to its convenience in solution of plate 

problems as a numerical method the finite strip 

method have attracted much attention from many 
authors as [16-18] suggested a procedure 

incorporating the finite strip method together with 

spring systems for treating plates on elastic 

supports. However series and closed form solutions 

for plates have been published for a limited number 
of cases as [19-25]. The orthogonalization of the 

series and other calculations are performed using 

Fourier expansion of Bernoulli polynomials under 

some realistic approximations for the limiting values 
of the boundary conditions. The studies can be 

summarized as series expansion consisting of some 

specially chosen trigonometric functions used for 
free vibrations of rectangular plates resting on 

elastic foundations with various boundaries and 

subjected to uniform and constant compressive, 
unidirectional forces and closed form solutions of 

free vibration problem of thin rectangular plates on 

Winkler and Pasternak elastic foundation model 

developed with some limitations such as mixed or 
fully-clamped boundary conditions etc. 

This study is oriented toward the development of 

finite grid elementas an application of the finite 
element method. The aim is to investigate an 

improved finite grid solution for vibration problems 

of plates on elastic foundation. In this method the 
discretized plate element is reassembled by the 

matrix displacement method so that consistent mass 
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matrix of the total structure is generated schme to 

compute all displacements for each nodal point in a 

convenient sequence.  

 
 

2 Theory of Problem Formulation 
In engineering practice, dynamic effects need to 

be taken into consideration for a wide variety of 

plate problems. It will be necessary to describe 

the governing equation of motion of plates in a 

general mathematical form for such cases. This 

can be achieved by inserting the inertia forces 

due to the lateral translations, in an appropriate 

way, into the governing differential equation for 

static equilibrium. For dynamic problems of the 

plates on elastic foundations with arbitrary 

shapes and boundary conditions with most 

elements developed to date there exists no 

rigorous solution except in the form of infinite 

Fourier series for a Levy-type solution. The 

series solutions are valid for very limited cases 

such as when the second foundation parameter 

has been eliminated, and simple loading and 

boundary conditions exist. Grillages of beam 

elements that have no such limitations can 

represent the plates. 

 

 

Fig.1 Representation of a rectangular plate by grids 
as parallel sets of one-dimensional beam elements 

replaces the continuous surface. 

The usual approach in formulating problems of 

beams, plates, and shells supported by elastic media 
is based on the inclusion of the foundation reaction 

in the corresponding differential equation of the 

beam, plate, or shell. In case of elastic foundation 
under the combined action of transverse load and 

vibration the governing differential equation of the 

plates can be obtained as;  
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  (1) 

where )t,y,x(ww  is the transverse deflection of 

the plate, k1 is Winkler parameter with the unit of 

force per unit area/per unit length (force/length
3
), k 

is reaction moment per unit area per unit rotation, 

q(x,y) is the external loads, D is flexural rigidity of 

plate and m is the mass of the plate per unit area. 

By representing the plate with assemblage of 
individual beam elements interconnected at their 

neighboring joints, the system cannot truly be equal 

to the continuous structure, however sufficient 
accuracy can be obtained similar to the static case.  

Therefore plates can be modeled as an assemblage 

of individual beam elements interconnected at their 
intersecting joints. There are many researches 

concerning analysis of beam element resting on 

elastic foundation as [26-30]. The properties of such 

beam elements on elastic foundations will be a very 
useful tool to solve such generalized problems. 

By representing the plate shown in Fig.1 with 

individual beam elements the problem can be 
reduced to a one-dimensional one. On the other 

hand the similar elements can be formed in radial 

and tangential directions for circular plates as [31]. 

By representing the continuous plate with individual 
beam elements resting on continuous springs. The 

problem will be reduced to one-dimensional one. 

Then Eq. (1) can be rewritten in reduced form of the 
governing equation for one-dimensional beam 

elements as; 
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The main advantage of the reduction is that the 

exact geometric stiffness matrix can be determined 

for the beam elements and these matrices can be 
used as a basis of assembling the elements to apply 

to plate problems as [32]. Then dynamic problems 

of the plates resting on Winkler foundation with 
arbitrary loading and boundary conditions could be 

solved approximately. Assemblies of beam elements 

that have no limitations for loading and boundary 

conditions can represent plates adequately.  
The degrees of freedom of the element are the 

local torsion, rotation and translation at each end. 

Since the angular displacements are obtained from 
the pure torsion member, the torsional DOF’s are 

independent of the foundation. Then it can be 

assumed that the displacements within the span are 

defined by the same interpolation functions those 
already derived for obtaining the element stiffness 

matrices, loading conditions and discontinuous 

surfaces. 
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3 Consistent Mass Matrices  
Consider the beam element shown in Fig. 2 having a 

mass distribution m(x). If it is subjected to a unit 

angular acceleration at point a, the acceleration 

would be developed along its length as follow; 

22 w)x()x(w                (3a) 

By d’Alembert’s principle, the inertial force due 

to this acceleration is; 

22I w)x()x(m)x(w)x(m)x(f              (3b) 

 

Fig.2 Representation of a beam element subjected to 
a unit real acceleration and virtual translation at the 

left side 

By the principle of virtual displacements the 
mass influence coefficients associated with this 

acceleration as the nodal inertial forces can be 

evaluated. As an example, it is possible to evaluate 

the vertical force pa, equating work done by the 
external force due to virtual displacement, to the 

work done on the distributed inertial forces fI(x). 

That is, 


L

0

I3a dx)x(w)x(fwp     (4) 

Substituting the vertical virtual displacement in 
terms of the shape functions into the equation then, 


L

0

3223 dx)x()x()x(mm     (5) 

By this analogy, this equation can be extended to 

evaluate for the other degrees of freedoms such as; 


L

0

jiij dx)x()x()x(mm     (6) 

By using the proper shape functions, the 

corresponding shape functions derived for 

conventional beam or beam element resting one or 

two-parameter elastic foundations, this equation lets 
to evaluate all of the mass matrix terms. Computing 

the mass coefficients by the same shape functions 

with same procedures as done for determining the 
stiffness matrices is called consistent-mass matrices. 

 

 

3.1 Consistent mass matrices for Two-

Parameter foundation 
For one-parameter foundation case it is possible to 

evaluate mass influence coefficients of a structural 

element with the procedures similar to that 

obtaining the element stiffness matrix by making the 
use of finite element concept. The consistent mass 

matrix of beam elements resting on two-parameter 

elastic foundations can also be evaluated by the 
same procedures as Winkler parameter case [33]. 

Substituting the proper shape functions of the beam 

elements resting on two-parameter derived by [32] 

for both B2A   and B2A   cases 

respectively, into Equation (6) leads to evaluate the 

consistent mass matrices. The terms of the mass 

matrix, )L,,t,p(fmij  , obtained as functions of 

foundation parameters, length of the elements and 
mass per unit length. Since the terms for two-

parameter cases are too complex and extremely long 

functions, they are not presented in this study. 
However, by letting both of the foundation 

parameters tend to zero, the correctness of the terms 

is checked. When foundation parameter k1 and kθ 

tend to zero (or p→0 and t→0), the terms in the 
equations reduce to the conventional beam 

consistent mass terms obtained by Hermitian 

functions as for Winkler case. 
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where t is dimensionless as; 

EI4

k

EI4

k

t
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The influence of the foundation parameters k1 and kθ 

on the consistent mass terms for B2A   with 

corresponding terms of Eq. (6) can be normalized as 

shown in Fig. 4. Note that, as the second parameter 

tends to zero (i.e. t →0) the same two-dimensional 
curves of one-parameter case given in Fig. 3 are 

obtained. 

 

Fig.3 Influence of two-parameter foundation on the 

m22, m25, m26, m33, m36 and m56 normalized 

consistent mass terms 
From the figure it is inferred that presence of 

second foundation parameter kθ in the analysis is 

remarkably dominant. This might have been 

anticipated because strain energy density functional 
includes one more term in the case of two parameter 

foundation than that of the Winkler foundation. 

 
 

3.2 Assembling the consistent mass matrix of 

the total structure 
After obtaining the consistent mass matrices of each 

one dimensional elements the discretized plate 
element reassembled by the matrix displacement 

method to obtain free vibration frequencies of a total 

structure. That is, the stiffness and consistent mass 

matrices of the total structure is generated by using 
a proper numbering shame to collect all 

displacements for each nodal point in a convenient 

sequence of the system for rectangular grids can be 
generated as follow;  

iii

NE

1i

aMaM
T

sys 


  

where i is the individual element number, NE is the 

number of elements depending on boundary 

conditions, ai is the individual rotation element 
matrix, Mi is the proper element consistent mass 

matrix for a beam conventional resting on one-

parameter elastic foundation and Msys is the system 

consistent mass matrix. Then the equations of 
motion for a system in a free vibration as an 

eigenvalue problem may be written as; 

0w)( 2  syssys
Mk 

  

where the quantities ω
2
 are the eigenvalues indicting 

the square of free vibration frequencies that satisfy 

the above equation, while the corresponding 
displacement vector w express the fitting shapes of 

the vibrating system as the eigenvectors of mode 

shapes and ksys is the stiffness matrix of the total 

structure defined by the same interpolation functions 
those already derived for obtaining the element 

stiffness matrices. 

 
 

4 Case Study  
The validity of the finite grid solution (FGM) were 

carried out with some comparisons of previous 

studies in literature for vibration problems of plates 
resting on elastic foundations [32]. The examples of 

the references were verified to demonstrate the 

accuracy of the method for vibration problems of 
plates on elastic foundations.   

In this study the examples concern with the free 

vibration of a directionally stepped plate and a 
uniform stepped plate on non-homogeneous elastic 

foundations studied by [34] as examples of analysis 

of plates with abrupt changes in thickness and 

complex support conditions. The fundamental mode 
of the plate simply supported all edges with abrupt 

changes in thickness shown in Fig.4 studied to 

indicate convergence and accuracy of the method 
for variation of thickness ratio. The plate is 

considered to be isotropic with elasticity module E, 

Poisson’s ratio v, flexural rigidity D of the thicker 

part and  is the mass density. 
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Fig.4 Bi-directionally stepped square plate with all 

edges simply supported (a) plan; (b) section 

The fundamental angular frequency w1 is 

expressed in terms of a dimensionless parameter 1 

can be presents as 
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The results of variation of fundamental angular 

frequency with the thickness ratio h2/h1 presented in 

Fig. 5 shows a good agreement between the 

methods.  

 

Fig.5 Comparison of fundamental frequencies for 

bi-directionally stepped and simply supported 

(SSSS) square plate 
 

For fundamental angular frequencies of a 

uniform square plate resting on a non-homogeneous 
foundation shown in Fig. 6 is considered to check 

the validity of the finite grid solution. The plate is 

supported on elastic foundation of modulus K2 

within the central square region of size 1.2ax1.2a, 
and elsewhere the foundation modulus is K1. The 

fundamental angular frequencies are compared for 

all of the edges simple supported (SSSS) boundary 
conditions. 

 

Fig.6 A uniform square plate on non-

homogeneous elastic foundation (a) plan, (b) 
section  

The fundamental angular frequencies are 

compared for all of the edges simple supported 

(SSSS) boundary conditions as shown in Fig. 7. 

 

Fig.7 Fundamental frequency coefficients of square 
plate on non-homogeneous elastic foundation 

(SSSS) 

 
The results for the plate with all edges simple 

supported portrayed graphically in Figs. 5 and 7. 

The solution method shows good agreement 

observed with the reference values for all cases as 
illustrated for solution of vibration problems.   

However in order to present a comparison study 

for vibration of plates resting on 2-parapeter 
foundation case free vibration analyses of square 

Levy-plates studied by Lam et al [35] taken into 

consideration. 

For the square plates with different combinations 
f or values of the non-dimensional foundation 

parameters k1 and k2 defined in Eq. (14), the 

fundamental frequencies are compared with the 
reference results for various foundation parameters 

as shown in Fig. 8. As for the other cases the 

vibration of plates on two-parameter foundation 
results show that the method produces very good 

results for the computational effort that goes into it.   
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Fig.8 Fundamental frequency parameter of the four 

edges simple supported square plate on two-

parameter foundation (SSSS and v = 0.3) 
 

 

5 Conclusion 
The solution of free vibration problems for 

rectangular plates resting on elastic foundations is 
considered to be too complex. In many cases there is 

apparently no analytical solution other than simple 

cases. A grid work analogy called the Finite Grid 
Solution involving discretized plate properties 

mapped onto equivalent beams with adjusted 

parameters and matrix displacement analysis are 

used to develop a more general simplified numerical 
approach for such complicated problems. It is 

shown that after obtaining solutions of the 

governing differential equations of beam elements, 
the derived exact shape functions (interpolation 

functions) have extended to determine consistent 

mass matrices by finite element method.  
It is noted that the consistent mass terms related 

to one dimensional beam elements on elastic 

foundations are very sensitive to variation of 

foundation parameters. It can be concluded that the 
finite grid solution as a combination of finite 

element method, lattice analogy and matrix 

displacement analysis of grid works is a useful tool 
to improve the solution for various vibration of plate 

problems. The numerical results of various vibration 

problems of plates on elastic foundations analysis of 
plates with abrupt changes in thickness and complex 

support conditions show that the finite grid solution 

is versatile and has high accuracy. On the other hand 

it is possible to extend the method to solve more 
complex cases of plate, grid and shell problems for 

various boundary conditions as an approximate 

solution. This is possible for free as well as forced 
vibration cases.     
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